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Abstract. Image classification algorithms are commonly based on the
Independent and Identically Distribution (IID) assumption, but in prac-
tice, the Out-Of-Distribution (OOD) problem is widely existing, i.e., the
contexts of images in the model predicting are usually unseen during
training. In this case, existing models trained under the IID assumption
are limiting generalization. Causal inference is an important method to
enhance the out-of-distribution generalization of models by partitioning
various contexts from data and leading models to learn context-invariant
predictions in different situations. However, existing methods mostly
have imbalance problems due to the lack of constraints when partition-
ing data, which weakens the improvement of generalization. Therefore,
we propose a Balanced Partition Causal Inference (BP-Causal) method,
which automatically generates fine-grained balanced data partitions in
an unsupervised manner, thereby enhancing the generalization ability of
models in different contexts. Experiments on the OOD datasets NICO
and NICO++ demonstrate that BP-Causal achieves stable predictions
on OOD data, and we also find that models using BP-Causal focus more
accurately on the foreground of images compared with the existing causal
inference method, which effectively improves the generalization ability.

Keywords: Out-of-Distribution Generalization · Causal Inference · In-
variant Learning.

1 Introduction

Image classification algorithms based on deep learning have shown good per-
formance under the Independent and Identically Distributed (IID) assumption.
However, real-world datasets usually suffer from out-of-distribution (OOD) gen-
eralization problems, i.e., contexts of images in the inferring phase are mostly
unseen by the modal in the training phase. Existing models trained under IID
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Fig. 1. The causal learning method based on Balanced Partition Causal Inference (BP-
Causal) divides the input data set by training multiple partition matrices, and divides
it into subsets with different contexts in a fine-grained manner.

assumption are hard to generalize well in this case. How to efficiently and ac-
curately extract cross-environment invariant features from the complex data
distribution in OOD environments is a problem that remains to be studied.

Causal inference is effective to alleviate OOD problems, and there are two
main approaches. The first is invariant causal prediction (ICP) [18, 19, 10], which
improves the stability of generalization by controlling the covariance of different
subsets. But this approach has limited effectiveness in complex scenes. The sec-
ond is invariant learning, typified by invariant risk minimization [3, 2, 12, 23] that
extracts causal features that are invariant across environments by dividing the
data and training a classifier that is optimal across all environments. However,
these methods are lacking of constraints, which will lead to the imbalance of the
divided data and impact the context invariant learning.

To address the aforementioned problems, we propose a Balanced Partition
Causal Inference method BP-Causal. By adding balance constraints, the division
effect of causal inference on data subsets is improved, the learning of the model in
different environments is further enhanced, and the effect of extracting invariant
causal features is improved, thereby enhancing the generalization ability in the
OOD environment. As shown in Figure 1, BP-Causal consists of three main
modules, Feature Extractor Module, Balance Split Module, and Causal Inference
Module. The Feature Extractor Module learns to extract the causal features,
confounding features and their mixed features from the input image; the Balance
Split Module uses the information in the confounding features to partition the
dataset and will be balanced for better learning in different situation; Causal
Inference Module use causal features and mix features to incorporate knowledge
learned from subsets of data from different contexts to further identify causal
features that are invariant across contexts, improving the generalization ability
of the model.

We conduct experiments on two OOD image classification datasets, NICO
and NICO++, to demonstrate the effect of BP-Causal balanced partitioning, as
well as its predictive ability on OOD data, and study the mechanism on general-
ization performance through ablation studies. Further case analysis shows that
BP-Causal can focus on causal features that are invariant across environments.
In conclusion, the main contributions of this paper are:
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– A balanced partition causal inference method BP-Causal is proposed, which
enhances the generalization of models on OOD data by self-learning manner.

– We demonstrate that a more balanced subset partitioning can have a positive
impact on the model learning context-free features, thereby improving the
model’s generalization ability on OOD data.

2 Related Works

2.1 Out-Of-Distribution(OOD) Generalization

Traditional machine learning algorithms are based on the assumption of inde-
pendent and identical distribution, but in reality the i.i.d. assumption is dif-
ficult to satisfy, so people correspondingly put forward the problem of out-of-
distribution(OOD) generalization [15, 11, 1]. The OOD problem addresses chal-
lenging settings where the test distribution is unknown and different from train-
ing, which is a big challenge for machine learning work. Some of the more chal-
lenging OOD settings that exist are: debiasing [6, 14, 4], domain adaption [7, 17,
22], long-tailed recognition [13, 16, 21], etc. To better deal with the OOD prob-
lem, [9] proposed a real-world OOD dataset NICO. We follow the OOD settings
for the NICO dataset, including long-tailed, zero-shot, and orthogonal.

2.2 Causal Inference

Causal inference[26] is an effective means to solve the OOD problem, which
usually assumes the existence of heterogeneity and causality within the data.
There are two main methods: ICP and a series of methods after it [18, 19, 10]
control the target variable to be only affected by its direct variable by exploiting
the heterogeneity within the data, but this method has strict requirements for
the heterogeneity of the data and this approach has limited effectiveness in
complex scenes. The invariant learning method represented by IRM [3, 2, 12, 23]
is different from the causal prediction method that assumes the original variable
level. It generalizes the previous invariance assumption to the representation
level and strives to find a classifier that is optimal in all environments. But this
method usually requires dividing the data into different parts and extracting
common features from the different parts. This data partitioning currently lacks
constraints, which may lead to inaccurate causal feature extraction.

3 Methods

3.1 Overview

As shown in the Figure 2, our model is roughly divided into three modules:
the feature extraction module extracts the causal features Fc, the confounding
features Fs, and the mixed features Fx from the input image x; the balanced
division module uses the information in the confounding features to divide the
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Fig. 2. Schematic diagram of the BP-Causal algorithm: the feature extraction module
extracts features for subsequent computation; the balance split module divides the
dataset into subsets with different environments in a balanced manner; the causal
inference module uses IRM Loss and ERM Loss to constrain at the same time, training
the ability to extract invariant features for prediction from different environments.

dataset into data subsets of different environments through the balanced split
generation algorithm; the causal inference module fuses the knowledge learned
from the data subsets of different environments to distinguish the invariance
across environments causal characteristics.

3.2 Feature Extraction Module

We use an attention module to separate causal and confounding features, In this
module, we use Fc and Fs to denote causal features and confounding features,
respectively. First, two samples are randomly selected from the training samples
for a simple random weighted summation, and the labels of the samples also
correspond to the weighted summation [27].

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj
(1)

We use x̃ to obtain the feature z through an attention module Attention(x),
and use the sigmoid function to disentangle the feature z to obtain the causal
feature Fc and the confounding feature Fs:

Feature(x) =


z = Attention(x̃),

Fc = Sigmoid(z)⊙ x̃,

Fs = Sigmoid(−z)⊙ x̃,

(2)

Where z ∈ Rw×h×c, Attention() is an attention module called CBAM [24],
⊙ denotes the element-wise product and Sigmoid(-z) = 1 - Sigmoid(z). We add
the module to the basicblock of ResNet to distinguish Fc and Fs. For the first
block, the disentangling of features is a little different from the next blocks, just
like the Equation (2). For the next blocks, in D-Block, we input the mix features
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we got in the previous block and disentangle them to get the causal features
and confounding features. In M-Block, the two input are fused to obtain mixed
features to prepare for the calculation of the next block. Because we can have
many blocks, the j + 1th D-Block and the jth M-Block are as follows:

D −Blockj+1 :


F̂c

j
, F̂s

j
= Feature(x̃j),

F j+1
c = F̂c

j+1
+ F j

c (skip− connection),

F j+1
s = F̂s

j+1
+ F j

s (skip− connection),

(3)

M −Blockj : F j
x = Conv(F j

c ) + Conv(F j
s ) (4)

Through this module, we extract disentangled causal, confounding and mix fea-
tures from the input image, and output them into the following module.

3.3 Balance Split Module

In this module, we use the extracted confounding features Fs from the feature
extraction module to train the partition matrix θ and update the data partition
T = {t1, t2, · · · , tm}. We first train a bias classifier h for each matrix and use h
we get the prediction c = h(Fs). We minimize the ERM Loss for it:

Lerm
bias = E(x,y)∈Dℓ(h(Fs), ỹ) (5)

where D is training data, h is a linear classifier, Fs is the confounding feature we
got from the previous module, y is the label.Then using this classifier, under the
constraint of an IRMloss [3], a partition matrix θ is trained to gradually update
the partition of the dataset in a fine-grained way:

Lirm
split =

∑
t∈Ti(θ)

Rt(h) + λ · ∥∇w|w=1.0R
t(w · h)∥2 (6)

where T = {t1, t2, · · · , tm} is current data partition, Ti(θ) denotes partition Ti
is decided by θ ∈ RK×m, K is the total number of training samples and m is the
number of splits in a partition, Rt(h) := E(x,y)∈tiℓ(h(Fs), y) is the risk under
subset ti, h is the bias classifier trained in the previous step, w = 1.0 is a scalar
and fixed “dummy” classifier, the gradient norm penalty is used to measure the
optimality of the dummy classifier at each subset t, and λ ∈ [0,∞] is a regularizer
balancing between the ERM term and the invariance of the predictor 1 · h.

Training only one partition matrix θ may lead to a large imbalance in subsets.
In order to alleviate the imbalance, we train multiple matrices, combine the
probability distributions of multiple trainings, and then decide the final partition:

θfinal =

m∑
i=0

p(k1,m1) · · · p(k1,mj)
...

. . .
...

p(kn,m1) · · · p(kn,mj)


i

(7)



6 W. Yuqing et al.

where p(km,mn) denotes the probability that the nth image is divided into the
jth partition. For θfinal ∈ RK×m, the index of the split to be divided into is:

Idx = argmax
θ

(Softmax(θfinal)) (8)

Then we can divide the K images into corresponding data subsets according to
Equation 8. Through this module, we divide the dataset into fine-grained subsets
with different environments, which is more helpful for the model to extract causal
features that are invariant across environments.

3.4 Causal Inference Module

Typically, we achieve causal inference by using backdoor adjustment:

P (Y |do(X)) =
∑
t∈T

P (Y |X, t)P (t) (9)

where P (Y |X, t) denotes the prediction of the classifier trained in split t and
P(t) := 1/m. With do(X), we hope to exclude spurious correlation between the
context and the prediction results, so we train the model on data from different
environments that are balanced divided, so that the model can focus on the
subject of the image in any environment to achieve causal inference.

We first use ERM Loss to constrain the feature extraction part and the
classifier, so that the model can extract features accurately.

Lerm
train =

1

m

m∑
i=0

E(x,y)∈tiℓ(gi(Fc), ỹ) (10)

where m is the number of splits in a partition, ti represents a specific split, gi
is a linear classifier for ti, Fc is causal feature. Then, by dividing and training
multiple classifiers for the data of different environments, and using an IRM
Loss to align these classifiers with constraints, a classifier that is optimal in
all environments is obtained. With this classifier we can mitigate the context
interference and make the model better focus on causal features.

Lirm
invariance =

∑
t∈Ti(θ)

Rt(g) + λ · ∥∇w|w=1.0R
t(w · g)∥2 (11)

After multiple partitions updating and training, we can gradually approach the
backdoor adjustment formula9 to achieve causal inference.

3.5 Training Strategy

There are multi-class loss constraints in BP-Causal, and a staged training method
can be used.The extraction of training features in the first stage is jointly con-
strained by the empirical risk loss from different data subsets and the invariant
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risk loss of aligning the classifier weights under different environments. In order
to make the model extract better features, we minimize these two losses:

minLerm
train + Lirm

invariance (12)

The second stage is training data partition. First we train a biased classifier using
the empirical risk loss, then use that classifier to constrain the data partition
by an invariant risk loss. We minimize the empirical loss to improve the model’s
ability to distinguish confounding features, but we maximize the invariant loss,
so that the m splits are divided in different fine-grained confounding features, so
as to achieve the purpose of dividing different environmental data subsets:

minLerm
bias +maxLirm

split (13)

4 Experiments

4.1 Datasets

NICO [9] is a real-world dataset with 2 superclasses for a total of 19 classes, and
9 or 10 contexts under each class, accumulating a total of 188 (subject, context)
combinations and collecting about 25,000 images. We follow the setting of [23],
selecting 10 animal classes and 10 contexts. We make a challenging OOD setting
consisting of three factors on context: 1) Long-tailed - The training context are
long-tailed in each class; 2) ZeroShot - for each class, 7 of the 10 contexts are in
the training images , the other 3 contexts only appear in the test; 3) Orthogonal
- the head context for each class is set to be as unique as possible.

NICO++ [25] is an upgrade to the NICO dataset. Consistent with NICO,
NICO++ decomposes images into (subject, context) combinations. NICO++
has included 80 classes, 10 public contexts, and 10 unique contexts for each
class, with a total of 200,000 images. We picked 10 classes from the public context
section, including animals, vehicles, and others. We follow the OOD settings[23],
including long-tail, ZeroShot - 4 of the 6 context per class are in the training
images, the other 2 labels only appear in test and orthogonal - as much as
possible to ensure that each class’ header context appears only once or twice.

4.2 Experimental Settings

Evaluation Protocol We follow [23] and use the accuracy on the validation
set and test set as the judging criterion. The formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

where TP, TN, FP, FN are the number of true positive, false positive samples,
true negative samples, and false negative samples.
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Table 1. Recognition accuracies (%) based on ResNet18 on NICO and NICO++
dataset. ”val” and ”test” denote the accuracies on validation set and test set.

NICO NICO++
Method Model

val test val test

ResNet-18 44.38 44.08 44.73 45.93
Cutout 46.23 44.08 45.75 45.75

Conv.
Method

Mixup 44.69 42.46 49.00 49.06

CBAM 43.77 43.54 44.27 45.47
CaaM 44.85 44.69 43.93 46.44

Causal
Method

BP-Causal 48.23 48.08 48.38 51.28

Implementation Details For NICO dataset, the optimizer was set to SGD
with a learning rate of 0.05. We trained the model with 200 epochs and the
learning rate was decreased by 5 at 120, 160 epoch. From 40 epoch, the data
partition will be updated every 20 epochs, and we divide the dataset to 4 parts.
For NICO++ dataset, the optimizer was set to SGD with a learning rate of 0.02.
We trained the model with 200 epochs and the learning rate was decreased by 5
at 80, 120, 160 epoch. From 40 epoch, the data partition will be updated every
40 epochs, and we divide the dataset to 4 parts.

4.3 Performance Comparison

This section presents the performance comparison of BP-Causal with existing
image classification methods, including the traditional Resnet-18 [8], two data
augmentation methods [5, 27], the CBAM attention mechanism [24] and a causal
method CaaM [23]. We can observe the following Table 1:

– Simply adding the attention mechanism, in the OOD context, may cause the
attention to focus on the wrong area, so that after adding attention module
[24], the model performance is not as good as the baseline algorithm.

– The performance of the CaaM algorithm is better than that of the baseline
algorithm, as well as the attention method. Because it learns causal features
that are invariant across environments and stable in prediction from different
environments by partitioning the dataset. However, there is a lack of con-
straints on the division of the dataset, which loses part of the performance.

– When BP-Causal divides the data set into different environment subsets, the
balance between the subsets is enhanced by adding constraints to the division
process. This method works better in the OOD case than baseline and using
the attention mechanism alone, about 3%-5% performance improvement.

4.4 Ablation Study

In this section, we investigate the effectiveness of the proposed algorithm. The
experiment selected resnet18 [8] as the baseline. As shown in the Table2, adding
the attention mechanism [24] directly will affect the performance, because the
attention mechanism may capture spurious correlation as a basis for prediction
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Table 2. The influence of each module of the algorithm on the performance.

NICO NICO++
Model

val test val test

Baseline 44.38 44.08 44.73 45.93

+ CBAM 43.77 43.54 44.27 45.47

+ CBAM + Causal 44.85 44.69 43.93 46.44

+ CBAM + Causal + LB 45.23 45.85 46.04 47.24

+ CBAM + Causal + MB 46.46 46.62 44.05 47.41

+ CBAM + Causal + GB 45.62 46.85 46.38 47.46

+ CBAM + Causal + LB + mixup 48.08 47.38 48.83 49.74

+ CBAM + Causal + MB + mixup 45.62 47.92 48.55 51.00

+ CBAM + Causal + GB + mixup 48.23 48.08 48.38 51.28

Fig. 3. Statistics on the number of subsets divided by different epochs. Where (a) is
the result of using CAAM partition, (b) is the result of BP-Causal partition.

in the OOD context. On the basis of CBAM [24], a causal method is added
to alleviate the problem of paying attention to errors in OOD environments.
However,there is no restriction on the partition of the data set, which leads to
the problem of imbalance in the data partition. We try three balanced methods
to constrain the partition. Loss Balance(LB) is to add a loss during training,
Manual Balance(MB) is to balance images of different subsets by manual deletion
and supplementation, Aggregation Balance(GB) is to alleviate the degree of
imbalance by training multiple partition matrices. In the third way, the inference
of the partition is minimal, but the imbalance of the partition is alleviated to a
certain extent, so the best performance is obtained. In addition, we found that
mixup [27], as an effective data augmentation method, also works well in OOD
situations. We tested the effects of the three balancing methods after adding the
mixup, and the Smooth Balance method is still the best than any other methods.

4.5 Analysis of Split Partition

In previous experiments we have demonstrated the positive effect of balanced
partitioning on the generalization ability of the model, in this section we will
show the practical effect of BP-Causal in balanced partitioning of subsets, as
shown in Figure 3. The division using the CAAM method has obvious imbalance
between different splits, which largely restricts the ability of the model to learn
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Fig. 4. Visualization of attention maps with base modal, CaaM, and BP-Causal.

invariant features from different subsets. The subset using BP-Causal division is
relatively more balanced. , and it is also very stable in different divisions, which
effectively improves the effect of the model learning from the causal feature.

4.6 Case Study

Figure 4 shows the qualitative attention map [20] comparison between our pro-
posed BP-Causal algorithm, the traditional method ResNet18 and the causal
method CaaM. We selected three categories of the NICO dataset, and each cat-
egory selected two contexts for experiments. As can be seen from the figure, our
method can focus more on the subject of the image rather than the surround-
ing environment and other objects compared to the other two methods. For
different contexts of the same category, a large part of ResNet18’s attention is
focused on the surrounding environment, especially under the category of dogs,
but our algorithm can pay attention to the characteristics of dogs in different
environments, This improves the classification accuracy of the model.

5 Conclusion

This paper proposes a causal learning method BP-Causal based on balanced
partition, which automatically generates balanced data subsets of different en-
vironments through training, extracts invariant causal features from different
environments, and enhances the model’s learning in OOD environments. capa-
bilities and generalization capabilities.
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BP-Causal effectively alleviates the attention bias of the attention model
and the interference of confounding factors in complex OOD scenarios. How-
ever, training multiple classifiers and then forcing the use of loss to align the
weights of different classifiers may lead to difficulty in convergence and affect
the performance of the model. We will try to use meta-learning and other means
to use a single meta-model to learn common features of different distributions,
reduce the complexity of the model, and improve the performance of the model.
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