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Abstract

Discovering social communities of web users through clus-

tering analysis of heterogeneous link associations has drawn

much attention. However, existing approaches typically re-

quire the number of clusters a prior, do not address the

weighting problem for fusing heterogeneous types of links

and have a heavy computational cost. In this paper, we ex-

plore the feasibility of a newly proposed heterogeneous data

clustering algorithm, called Generalized Heterogeneous Fu-

sion Adaptive Resonance Theory (GHF-ART), for discover-

ing user communities in social networks. Different from ex-

isting algorithms, GHF-ART performs real-time matching of

patterns and one-pass learning which guarantee its low com-

putational cost. With a vigilance parameter to restrain the

intra-cluster similarity, GHF-ART does not need the num-

ber of clusters a prior. To achieve a better fusion of multiple

types of links, GHF-ART employs a weighting function to

incrementally assess the importance of all the feature chan-

nels. Extensive experiments have been conducted to analyze

the performance of GHF-ART on two heterogeneous social

network data sets. The promising results comparing with ex-

isting methods demonstrate the effectiveness and efficiency

of GHF-ART.

Keywords— User community discovery, Heterogeneous
social networks, heterogeneous data clustering, multi-
modal feature weighting

1 Introduction

Clustering [4] for discovering communities of users in
social networks [1] has been an important task for the
understanding of collective social behavior [24] and as-
sociative mining such as social link prediction and rec-
ommendation [2, 3]. However, with the popularity of so-
cial websites such as Facebook, users may communicate
and interact with each other easily and diversely, such as
posting blogs and tagging documents. The availability
of those social media data, on one hand, enables the ex-
traction of rich link information among users for further
analysis. On the other hand, new challenges have arised
for traditional clustering techniques to perform commu-
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nity discovery from heterogeneous social networks, such
as the scalability to large social networks, techniques
for link representation and methods for fusing heteroge-
neous types of links.

In the recent years, many works have been done on
the clustering of heterogeneous data. Existing meth-
ods may be considered in four categories: multi-view
clustering approach [5, 12, 13, 17], spectral clustering
approach [11, 14, 21, 23], matrix factorization approach
[6, 15] and aggregation approach [8, 9]. However, they
have several limitations for clustering heterogeneous so-
cial network data in practice. Firstly, existing algo-
rithms typically involve iterative optimization which
does not scale well to big data sets. Secondly, most
of them need the number of clusters a prior, which is
hard to decide in practice. Thirdly, most of those al-
gorithms do not consider the weighting problem when
fusing multiple types of links. Since different types of
links have their own meanings and levels of feature val-
ues, equal or empirical weights for them may bias their
importance in similarity measure and may not yield sat-
isfactory performance.

In this paper, we explore the feasibility of General-
ized Heterogeneous Fusion Adaptive Resonance Theory
(GHF-ART) for identifying user groups in the heteroge-
neous social networks. GHF-ART [10], extended from
Fusion ART [16], has been proposed for clustering we-
b multimedia data through the fusion of an arbitrary
rich level of heterogeneous data resources such as im-
ages, articles and surrounding text. For clustering data
patterns of social networks, we develop a set of specific
feature representation and learning rules for GHF-ART
to handle various heterogeneous types of social links,
including relational links, textual links in articles and
textual links in short text.

GHF-ART has several key properties different from
existing approaches. Firstly, GHF-ART performs on-
line and one-pass learning so that the clustering process
can be done in just a single round of pattern presenta-
tion. Secondly, GHF-ART does not need the number of
clusters a prior. Thirdly, GHF-ART employs a weight-
ing function, termed Robustness Measure (RM ), which
adaptively tunes the weights for different feature chan-
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nels according to their importance in pattern represen-
tation in order to achieve a satisfactory level of overall
similarity across all the feature channels. Besides, GHF-
ART not only globally considers the overall similarity
across all the feature channels, but also locally evalu-
ates the similarity obtained from each channel. This
helps to handle cases when users share some common
interests but behave differently in some other aspects.

We analyze the performance of GHF-ART on two
public social network data sets, namely the YouTube
data set [8] and the BlogCatalog data set [7], through
parameter sensitivity analysis, clustering performance
comparison, effectiveness evaluation of Robustness Mea-
sure and time cost. The experimental results show that
GHF-ART outperforms and is much faster than many
existing heterogeneous data clustering algorithms.

The remainder of this paper is summarized as fol-
lows. Section 2 reviews existing works on the problem of
heterogeneous data clustering. Section 3 formulates the
problem of community discovery in the heterogeneous
social networks. The technical details of GHF-ART are
described in Section 4. Section 5 presents the analysis
of experimental results. The final section concludes and
highlights future work.

2 Related Work

The task of identifying social groups of users via het-
erogeneous social links is related to the problem of het-
erogeneous data clustering. Considering different mod-
el formulation, existing approaches can be categorized
into four categories: 1) The multi-view clustering
approach [5, 12, 13, 17] considers to use two clustering
models for two types of independent features. Subse-
quently, the learnt parameters of them are further re-
fined by learning from each other iteratively. However,
this approach is restricted to two types of links. 2) The
spectral clustering approach [11, 14, 21, 23] typi-
cally models each feature modality as a graph and uses
different unified objective function to identify an over-
all best cut of the graphs, which is typically an embed-
ding vector and needs traditional clustering algorithms
to obtain the final results. However, it typically requires
heavy computation; 3) The Matrix factorization ap-
proach [6, 15] factorizes a similarity matrix into two or
three matrices by optimizing a unified objective which
considers all types of features. The cluster membership
of patterns are identified by finding the cluster indica-
tor matrix that contains the projection values of each
data pattern to a pre-defined number of clusters. 4)
The aggregation approach [8, 9] follows the idea of
first obtaining the relational vectors [8] or similarities
[9] between patterns for each type of features and then
integrating them to produce the final results.

Figure 1: The architecture of GHF-ART for integrating
K types of feature vectors.

3 Problem Statement

The community discovery problem in heterogeneous
social networks is to identify a set of social user groups
by evaluating different types of links between users such
that members in a group interact with each other more
frequently and share more common interests than those
outside the group.

Consider a set of users U = {u1, . . . , uN} and their
associated multiple types of links L = {l1, . . . , lK}, such
as contact links and subscription links. Each user un
can be represented by a multi-channel input pattern
I = {x1, . . . ,xK}, where xk is a feature vector extracted
from the k-th link.

Consequently, the community discovery task is to
identify a set of clusters C = {c1, . . . , cJ} according
to the similarities among the user patterns evaluated
within and across different types of links. As a result,
given a user uN ∈ cJ and two users up ∈ cJ and uq 6∈ cJ ,
for ∀p, q such that up, uq ∈ U , we have SuN ,up

> SuN ,uq
,

where SuN ,up denotes the overall similarity between uN
and up. Namely, users in a cluster may consistently
have a higher degree of similarity in terms of all types
of links than those belonging to the other clusters.

4 GHF-ART for Clustering Heterogeneous
Social Links

GHF-ART [10] is designed for clustering composite
patterns which are represented by multiple types of
features. As shown in Fig. 1, GHF-ART consists of K
independent feature channels in the input field which
may handle an arbitrarily rich level of heterogeneous
links and a category field consisting of clusters. GHF-
ART processes input patterns one at a time during
which each of them is either identified as a novel
template/exemplar which incurs the generation of a new
cluster or categorized into an existing cluster of similar
patterns.

In the following subsections, we illustrate the key
steps in GHF-ART in terms of representation of com-
monly used social links, heterogeneous link fusion for
pattern similarity measure, learning strategies for clus-
ter template generalization and weighting algorithm for
heterogeneous links. The complete algorithm of GHF-
ART is shown at the end of this section.

804 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/0

4/
22

 to
 5

8.
19

4.
16

8.
60

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



4.1 Heterogeneous Link Representation In
GHF-ART, each social user with multi-modal links
is represented by a multi-channel input pattern
I = {xk|Kk=1}, where xk is the feature vector for the
k-th feature channel. When presenting to GHF-ART,
the input patterns undergo two normalization proce-
dures. Firstly, min-max normalization is employed
to guarantee that the input values are in the interval
[0, 1]. Secondly, complement coding [18] normalizes
the input feature vector by concatenating xk with its
complement vector x̄k such that x̄ki = 1− xki .

To fit GHF-ART with the social network data,
we categorize commonly used social links into three
categories and develop the respective representation
methods accordingly, as discussed below.

4.1.1 Density-based Features for Relational
Links Relational links, such as contact and co-
subscription links, use the number of interactions as
the strength of connection between users. Consider-
ing a set of users U = {u1, . . . , uN}, the density-based
feature vector of the n-th user un is represented by
[fn,1, . . . , fn,N ], wherein fn,i reflects the density of in-
teractions between the user un and the i-th user uN .

4.1.2 Text-similarity Features for Articles
Text-similarity features are used to represent the ar-
ticles of users with long paragraphs such as blogs. Con-
sidering a set of users U = {u1, . . . , uN} and the word
list G = {g1, . . . , gM} of all the M distinct keyword-
s from their articles, the text-similarity feature vector
of the n-th user un is represented by [fn,1, . . . , fn,M ],
where fn,i indicates the importance of keyword gi to
represent the user un, which can be computed by term
frequency-inverse document frequency (tf-idf).

4.1.3 Tag-similarity Features for Short Text
Tag-similarity features are used to represent short text,
such as tags and comments. The key difference of short
text from article is that short text consists of few but
meaningful words. Given a set of user U = {u1, . . . , uN}
and the corresponding word list G = {g1, . . . , gH} of all
the H distinct words, the tag-similarity feature vector
of the n-th user un is expressed by [fn,1, . . . , fn,H ]. Fol-
lowing the representation method for meta-information
in [10], given that Gn is the word list of un, fn,i (i =
1, ...,H) is given by

(4.1) fn,i =

{
1, if gi ∈ Gn
0, otherwise

.

4.2 Heterogeneous Link Fusion for Pattern
Similarity Measure GHF-ART performs the selec-
tion of best-matching cluster to the input pattern and
evaluates the fitness between them through a two-way

similarity measures: a bottom-up measure to select a
winner cluster by globally considering the overall sim-
ilarity across all the feature channels; and a top-down
measure to locally evaluate if the similarity for each fea-
ture channel meets the vigilance criteria.

4.2.1 Bottom-Up Similarity Measure for Cat-
egory Choice In the first step, a choice function is
employed to evaluate the overall similarity between the
input pattern and the template weight of each cluster
in the category field, which is defined by

T (cj , I) =

K∑
k=1

γk
|xk ∧wk

j |
α+ |wk

j |
,(4.2)

where wk
j denotes the weight vector for the k-th feature

channel of the j-th cluster, contribution parmeter γk ∈
[0, 1] is the weight for the k-th feature channel, choice
parameter α ≈ 0 is a positive real value to balance the
denominator, the operation ∧ is defined by (p ∧ q)i ≡
min(pi,qi), and |.| is the `1 norm. The choice function
evaluates the proportion of intersection between the
feature vectors of the input pattern and the prototypes
of the winner across all the feature channels so that
the winner cluster with the best matching feature
distribution in the category field is identified.

4.2.2 Top-Down Similarity Measure for Tem-
plate Matching After identifying the winner cluster
cj∗ , a match function is used to evaluate if the selected
winner matches the input pattern in each feature chan-
nel. For the k-th feature channel, the match function is
defined by

M(cj∗ ,x
k) =

|xk ∧wk
j∗ |

|xk|
.(4.3)

If the match function value for each of the K feature
channels satisfies the respective vigilance criterion de-
fined by M(cj∗ ,x

k) > ρ for k = 1, ...K, where ρ ∈ [0, 1]
is the vigilance parameter, a resonance occurs so that
the input pattern is categorized into the winner cluster.
Otherwise, a reset occurs to select a new winner from
the rest of the clusters in the category field.

4.3 Learning from Heterogeneous Links

4.3.1 Learning from Density-based and Text-
similarity Features The density-based features and
textual features for articles use a distribution to repre-
sent the characteristics of a user. Therefore, GHF-ART
should be able to learn the generalized distribution of
similar patterns in the same cluster so that the users
with similar feature distribution can be identified.

To this end, we use the learning function of Fuzzy
ART [18]. Assuming the k-th feature channel is for
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density-based features, the corresponding learning func-
tion of the winner cluster cj∗ is therefore defined by

ŵk
j∗ = β(xk ∧wk

j∗) + (1− β)wk
j∗ ,(4.4)

where β ∈ [0, 1] is the learning parameter. We observe
that the updated weight values will not be larger
than the old ones so that this learning function may
incrementally identify the key features by preserving
the key features which have stably high values while
depressing the features which are unstable in values.

4.3.2 Learning from Tag-similarity Features
We use the learning function for meta-information in
GHF-ART [10] to model the cluster prototypes for tag-
similarity features. Assuming the k-th feature channel
is for tag-similarity features of short text, given the k-th
feature vector xk = [xk1 , . . . , x

k
H ] of the input pattern I,

the winner cluster cj∗ with L users and the correspond-
ing weight vector wk

j∗ = [wkj∗,1, . . . , w
k
j∗,H ] of cj∗ for the

k-th feature channel, the learning function for wkj∗,h is
defined by

ŵkj∗,h =

{
ηwkj∗,h if xkh = 0

η(wkj∗,h + 1
L ) otherwise

,(4.5)

where η = L
L+1 . (4.5) models the cluster prototype for

the tag-similarity features by the probabilistic distribu-
tion of tag occurrences. Thus, the similarity between
tag-similarity features can be considered as the number
of common words. During each round of learning, the
keywords with high frequency to occur in the cluster
are given high weights while those of the noisy words
are incrementally decreased.

4.4 Adaptive Weighting of Heterogeneous
Links GHF-ART employs the Robustness Measure (R-
M ) to adaptively tune γ for different feature channel-
s, which evaluates the importance of different feature
channels by considering the intra-cluster scatters.

Considering a cluster cj with L users, each of which
is denoted by Il = {x1

l , . . . ,x
K
l } for l = 1, . . . , L, and

the corresponding weight vectors for theK feature chan-
nels denoted byWj = {w1

j , . . . ,w
K
j }, the Difference for

the k-th feature channel of cj is defined by

Dk
j =

1
L

∑
l |wk

j − xkl |
|wk

j |
.(4.6)

Considering all the clusters, the Robustness of the k-th
feature channel can be measured by

Rk = exp(− 1

J

∑
j
Dk
j ).(4.7)

As the weights for the respective feature channels, the
contribution parameter for the k-th feature channel γk

is defined by

Algorithm 1 GHF-ART

Input: Input patterns In = {xk|Kk=1}, α, β and ρ.

1: Present I1 = {xk|Kk=1} to the input field.
2: Set J = 1. Create a node cJ such that wk

J = xk for
k = 1, . . . ,K.

3: set n = 2.
4: repeat
5: Present In to the input field.
6: For ∀cj (j = 1, ..., J), calculate the choice func-

tion T (cj , In) according to (4.2).
7: Identify the winner cluster cj∗ so that j∗ =

arg maxj:cj∈F2
T (cj , In). If T (cj∗ , In) = 0, go to

10.
8: Calculate the match function M(cj∗ ,x

k) for k =
1, . . . ,K according to (4.3).

9: If ∃k such that M(cj∗ ,x
k) < ρk, set T (cj∗ , In) =

0, j∗ = 0, go to 7.
10: If j∗ 6= 0, Update wk

j∗ for k = 1, . . . ,K according
to (4.4) and (4.5) respectively and update γ
according to (4.7)-(4.10).

11: If j∗ = 0, set J = J + 1, create a new node cJ
such that wk

J+1 = xk for k = 1, . . . ,K, update γ
according to (4.11)

12: n = n+ 1.
13: until All the input patterns are presented.
Output: Cluster Assignment Array {An|Nn=1}.

γk =
Rk∑K
k=1R

k
.(4.8)

The respective incremental update equations for
the contribution parameters are further derived for the
following two cases:

• Resonance in existing cluster: Assume that the
input pattern IL+1 = {x1

L+1, . . . ,x
K
L+1} is assigned

to an existing cluster cj . For the k-th feature
channel, the corresponding update equations for
the density-based and text-similarity features and
tag-similarity features are defined by (4.9) and
(4.10) respectively:
(4.9)

D̂k
j =

η

|ŵk
j |

(|wk
j |Dk

j + |wk
j − ŵk

j |+
1

L
|ŵk

j − xkL+1|)

(4.10)

D̂k
j =

η

|ŵk
j |

(ηDk
j + |ŵk

j − ηwk
j |+

1

L
|ŵk

j − xkL+1|).

After the update for all feature channels, the up-
dated contribution parameter can then be obtained
by calculating (4.7)-(4.8).

• Generation of new cluster: When generating
a new cluster, the differences of other clusters re-
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main unchanged. Therefore, it just introduces a
proportionally change of Difference. Considering
the robustness Rk (k = 1, ...,K) for all of the fea-
ture channels, the update contribution parameter
for the k-th feature channel is derived as:

(4.11) γ̂k =
(Rk)η∑K
k=1(Rk)η

.

4.5 Time Complexity Comparison The time
complexity of GHF-ART with Robustness Measure has
been demonstrated to be O(nincnf ) in [10], where ni
is the number of input patterns, nc is the number of
clusters and nf is the total number of features.

In comparison with existing heterogeneous data
clustering algorithms, the time complexity of LMF [6] is
O(tninc(nc + nf )), PMM [8] is O(n3

i + tncninf )), SRC
[14] is O(tn3

i + ncninf )) and NMF [15] is O(tncninf ),
where t is the number of iteration. We observe that
GHF-ART has a much lower time complexity.

5 Experiments

5.1 YouTube Data Set

5.1.1 Data Description The YouTube data set 1 is
a heterogeneous social network data set, which is orig-
inally used to study the community detection problem
via heterogeneous interactions of users. This data set
contains 15, 088 users from YouTube website and in-
volves five types of relational links, including contact
network, co-contact network, co-subscription network,
co-subscribed network and favorite network.

5.1.2 Evaluation Measure Since there is no ground
truth labels of users in this data set, we adopt the
following five evaluation measures: 1) Cross-Dimension
Network Validation (CDNV ) [8], which evaluates how
well the cluster structure learnt from one or more types
of links fits the network of the other type of links. A
larger value indicates a better performance; 2) Average
Density (AD) measures the average probability of two
users in the same cluster having connection, defined by

AD = 1
J

1
KΣjΣk

2ekj
nj(nj−1) , where ekj is the number of

edges of the k-th link in cluster cj and nj is the number
of patterns in cj ; 3) Intra-cluster sum-of-squared error
(Intra-SSE ) measures the weighted average of SSE
within clusters across feature modalities, defined by
Intra-SSE = ΣjΣxk

i ∈cjΣk
nj

Σjnj
(xki − x̄kj )2, where xki

is the feature vector of the i-th pattern for the k-th
link and x̄kj is the mean value of all the xki ∈ cj ;
4) Between-cluster SSE (Between-SSE ) measures the
average distance between two cluster centers to evaluate

1http://socialcomputing.asu.edu/datasets/YouTube

Figure 2: The clustering performance of GHF-ART on
the YouTube data set in terms of SSE-Ratio by varying
the values of α, β and ρ respectively.

Figure 3: The cluster structures generated by GHF-
ART on the Youtube data set in terms of different values
of vigilance parameter ρ.

how well-separated the clusters are from each other,
defined by Between-SSE = ΣjΣiΣk

1
J(J−1) (x̄kj − x̄ki )2;

and 5) SSE-Ratio = Intra-SSE/Between-SSE gives an
overall performance.

5.1.3 Parameter Selection Analysis We initial-
ized α = 0.01, β = 0.6 and ρ = 0.6 and studied the
change in performance of GHF-ART in terms of SSE-
Ratio by varying one of them while fixing others, as
shown in Fig. 2. We observe that despite some small
fluctuations, the performance of GHF-ART is roughly
robust to the change in the values of α and β. Regard-
ing the vigilance parameter ρ, we find the performance
is improved when ρ increases up to 0.65 and degrades
when ρ > 0.85. We further analyzed the cluster struc-
tures generated under different values ρ, which is shown
in Fig. 3. We observe that the increase of ρ leads to
the generation of more clusters, which may contribute
to the compactness of clusters. At ρ = 0.9, a significant
number of small clusters are generated, which degrades
the performance in terms of recall.

To study the selection of ρ, we analyzed the cluster
structure at ρ = 0.5 and 0.7 at which the best perfor-
mance is obtained. We observe that when ρ increases
from 0.5 to 0.7, the number of small clusters, which
contain less than 100 patterns, increases. Therefore, we
assume that when a suitable ρ is reached, the number of
small clusters starts to increase. If this idea works, an
interesting empirical way to select a reasonable value of
ρ is to tune the value of ρ until a small number of small
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Table 1: The clustering performance of GHF-ART, K-means, SRC, LMF, NMF and PMM under the best setting
of pre-defined number of clusters (“k”) (ρ = 0.6 and 0.65 when k = 35 and 37 respectively for GHF-ART) in
terms of CDNV , Average Density (AD), Intra-SSE, Between-SSE and SSE-Ratio on the YouTube data set.

CDNV AD Intra-SSE Between-SSE SSE-Ratio
value k value k value k value k value k

K-means 0.2446 43 0.0572 40 7372.4 41 9.366 40 774.14 41
SRC 0.2613 37 0.0691 35 6593.6 36 10.249 35 652.34 36
LMF 0.2467 39 0.0584 38 6821.3 41 9.874 37 694.72 40
NMF 0.2741 36 0.0766 35 6249.5 36 10.746 34 591.57 35
PMM 0.2536 36 0.0628 37 6625.8 37 9.627 34 702.25 35

GHF-ART 0.2852 37 0.0834 37 5788.6 37 10.579 35 563.18 37

clusters, less than 10% of the total number of clusters,
are identified.

5.1.4 Clustering Performance Comparison We
compared the performance of GHF-ART with four ex-
isting heterogeneous data clustering algorithms, namely
the Spectral Relational Clustering (SRC) [14], Linked
Matrix Factorization (LMF) [6], Non-negative Matrix
Factorization (NMF) [15] and Principal Modularity
Maximization (PMM) [8]. Since SRC and PMM need
K-means to obtain the final clusters, we also employed
K-means with Euclidean distance as a baseline.

To make a fair comparison, since GHF-ART needs
to perform min-max normalization, we applied the
normalized data as input to the other algorithms. For
GHF-ART, we fixed α = 0.01 and β = 0.6. For K-
means, we concatenated the feature vectors of the five
types of links. For SRC, we use the same weight values
as GHF-ART. The number of iteration for K-means,
SRC, LMF, NMF and PMM was set to 50.

We obtained the clustering results of GHF-ART
with different values of ρ ranging from 0.3 to 0.9 and
those of K-means, SRC, LMF, NMF and PMM with
different pre-defined numbers of clusters ranging from
20 to 100. The best performance of each algorithm for
each evaluation measure is reported in Table 1. We
observe that the best performance of each algorithm
is typically achieved with 34 − 41 clusters. GHF-ART
usually achieves the best performance with ρ = 0.65
which is more consistent than other algorithms. GHF-
ART outperforms other algorithms in terms of all the
evaluation measures except between-SSE, but the result
of GHF-ART is still competitive to the best one.

5.1.5 Correlation Analysis of Heterogeneous
Networks We first ran GHF-ART under α = 0.01,
β = 0.6 and ρ = 0.65 and showed the trace of contribu-
tion parameters for each type of links during clustering
in Fig. 4. We observe that the weights for all type-
s of features begin with 0.2. The initial fluctuation at
n = 1500 is due to the incremental generation of new

Figure 4: Trace of contribution parameters for five
types of links during clustering with the increase in the
number of input patterns.

Figure 5: The probability that pairs of patterns falling
into the same cluster are connected in each of the five
relational networks.

clusters. After n = 12000, the weight values of all types
of features become stable.

We further analyzed the probability of pairs of
connected patterns falling into the same cluster to
study how each type of relational networks affects the
clustering results, as shown in Fig. 5. We observe that
the order of relational networks is consistent with the
results shown in Fig. 4. This demonstrates the validity
of Robustness Measure. Among all types of links, the
contact network achieves a much higher probability than
other relational networks. This may be due to the fact
that the contact network is much sparser than the other
four networks. As such, we may expect that the links
of contact network are more representative.
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Table 2: The clustering performance of GHF-ART, K-means, SRC, LMF, NMF and PMM under the best setting
of pre-defined number of clusters (“k”) (ρ = 0.15, 0.2 and 0.25 when k = 158, 166 and 174 respectively for
GHF-ART) on the BlogCatalog data set in terms of Average Precision (AP), Cluster Entropy (Hcluster), Class
Entropy (Hclass), Purity and Rand Index (RI ).

AP Hcluster Hclass Purity RI
value k value k value k value k value k

K-means 0.6492 185 0.5892 185 0.5815 165 0.6582 185 0.5662 170
SRC 0.7062 175 0.5163 175 0.4974 160 0.7167 175 0.6481 170
LMF 0.6626 175 0.5492 175 0.5517 155 0.6682 175 0.6038 165
NMF 0.7429 175 0.4836 175 0.4883 155 0.7791 175 0.6759 165
PMM 0.6951 170 0.5247 170 0.5169 165 0.6974 170 0.6103 165

GHF-ART 0.7884 174 0.4695 174 0.4865 158 0.8136 174 0.6867 166

5.2 BlogCatalog Data Set

5.2.1 Data Description The BlogCatalog data set
2 is crawled in [7] and used for discovering the over-
lapping social groups of users. It consists of the raw
data of 88, 784 users, each of which involves the friend-
ship to other users and the published blogs. Each blog
of a user is described by several pre-defined categories,
user-generated tags and six snippets of blog content.

We extracted three types of links, including a
friendship network and two textual similarity networks
in terms of blog content and tags. By filtering infrequent
words from tags and blogs, we obtained 66, 418 users,
6, 666 tags and 17, 824 words from blogs. As suggested
in [7], we used the most frequent category in the blogs
of a user as the class label and obtained 147 class labels.

5.2.2 Evaluation Measure With the ground truth
labels, we used Average Precision (AP), Cluster En-
tropy and Class Entropy [22], Purity [19] and Rand In-
dex [20] as the clustering evaluation measures. Aver-
age Precision, Cluster Entropy and Purity evaluate the
intra-cluster compactness. Class Entropy evaluates how
well the classes are represented by the minimum number
of clusters. Rand Index considers both cases.

5.2.3 Parameter Selection Analysis We studied
the influence of parameters to the performance of GHF-
ART on the BlogCatalog data set with the initial setting
of α = 0.01, β = 0.6 and ρ = 0.2, as shown in Fig. 6.
We observe that, consistent with those in Fig. 2, the
performance of GHF-ART is robust to the change in
the choice and learning parameters. As expected, the
performance of GHF-ART varies a lot due to the change
in ρ. This curve may also be explained by the same
reason for that in Fig. 2.

To validate our findings to select a suitable ρ
in section 5.1.3, we analyzed the cluster structures
corresponding to the four key points of ρ, as shown

2http://dmml.asu.edu/users/xufei/datasets.html#Blogcatalog

Figure 6: The clustering performance of GHF-ART on
the BlogCatalog data set in terms of Rand Index by
varying the values of α, β and ρ respectively.

Figure 7: The cluster structures generated by GHF-
ART on the BlogCatalog data set in terms of different
values of vigilance parameter ρ.

in Fig. 7. We observe that, at ρ = 0.2, nearly 20
small clusters with less than 100 patterns are generated.
Interestingly, we find that the number of small clusters
is also around 10% of the total number of clusters, which
fits the findings that we observe on the YouTube data
set. This demonstrates the feasibility of the proposed
empirical way to select a suitable value of ρ.

5.2.4 Clustering Performance Comparison We
compared the performance of GHF-ART with the same
set of algorithms compared in the YouTube data set un-
der the same parameter settings as mentioned in section
5.1.4, except the number of clusters. We varied the val-
ue of ρ from 0.1 to 0.4 with an interval of 0.05 and the
number of clusters from 150-200 with an interval of 5.
The best performance for each algorithm with the num-
ber of clusters is shown in Table 2. We observe that
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Table 3: The five biggest clusters identified by GHF-ART with class labels, top tags, cluster size and Precision.

Cluster Rank Class Label Top Tags Cluster Size Precision
1 Personal music, life, art, movies, Culture 2692 0.7442
2 Blogging news, blog, blogging, SEO, Marketing 2064 0.8166
3 Health health, food, beauty, weight, diet 1428 0.7693
4 Personal life, love, travel, family, friends 1253 0.6871
5 Entertainment music, movies, news, celebrity, funny 1165 0.6528

GHF-ART obtained much better performance (at least
4% improvement) than the other algorithms in terms
of Average Precision, Cluster Entropy and Purity. This
indicates that GHF-ART may well identify similar pat-
terns and produce more compact clusters. Competitive
performance is obtained by SRC and NMF in terms of
Class Entropy. Considering the number of clusters un-
der the best settings, we find that GHF-ART identifies
a similar number of clusters to other algorithms, which
demonstrates the effectiveness of GHF-ART.

5.2.5 Case Study We further studied the identified
communities by GHF-ART. First, we listed the five
biggest clusters discovered, as shown in Table 3. We
observe that those clusters are well formed to reveal
the user communities since more than 1000 patterns
are grouped with a reasonable level of precision. We
also observe that most of the top tags discovered by the
cluster weight values are semantically related to their
corresponding classes. Interestingly, the clusters ranked
1 and 4 belong to the class “Personal”. This may be
because, according to our organized statistics, “Person-
al” is much larger than other classes. However, in the
top 5 tags, only “life” is shared by them. To have an in-
sight of the relation between these two clusters, we plot
the tag clouds for them. As shown in Fig. 8, we ob-
serve that the two clusters share many key tags such as
“love”, “travel”, “personal” and “film”. Furthermore,
when looking into the large number of smaller tags in
the clouds, we find that such tags in Fig. 8(a) are more
related to “music” and enjoying “life”, such as “game”,
“rap” and “sport”, while those in Fig. 8(b) are more
related to “family” life, such as “kids”, “parenting” and
“wedding”. Therefore, although the shared key tags
indicate their strong relations to the same class “Per-
sonal”, they are separated into two communities due to
the differences in the sub-key tags.

5.2.6 Time Cost Analysis To evaluate the efficien-
cy of GHF-ART on big data, we further analyzed the
time cost of GHF-ART, K-means, SRC, LMF, NMF and
PMM with the increase in the number of input pattern-
s. To make a fair comparison, we set the number of
clusters k = 166 for K-means, SRC, LMF, NMF and
PMM and set ρ = 0.2 for GHF-ART so that the num-

Figure 8: The tag clouds generated for the (a) 1st and
(b) 4th biggest clusters. A larger font of tag indicates a
higher weight in the cluster.

Figure 9: Time cost of GHF-ART, K-means, SRC,
LMF, NMF and PMM on the BlogCatalog Data set
with the increase in the number of input patterns.

bers of the generated clusters for all the algorithms are
the same. In Fig. 9, we observe that GHF-ART run-
s much faster than the other algorithms. Whereas the
other algorithms incur a great increase of time cost with
the increase in the number of input patterns, GHF-ART
maintains a relatively small increase. This demonstrates
the scalability of GHF-ART to big data.

6 Conclusion

In this paper, we have explored the feasibility of GHF-
ART for the community discovery problem in the het-
erogeneous social networks. Comparing with existing
heterogeneous data clustering algorithms [6, 8, 14, 15]
for clustering heterogeneous social networks, GHF-ART
has several advantages including: 1) Scalability to big
data: GHF-ART performs real-time matching of pat-
terns and one-pass learning which guarantee low com-
putational cost; 2) Doing away with the number of clus-
ters a prior: GHF-ART employs a vigilance parameter
to restrain the intra-cluster similarity so that clusters
may be incrementally identified; 3) Considering hetero-
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geneity of links: GHF-ART considers different repre-
sentation of learning functions for heterogeneous types
of links, which is flexible and may produce better repre-
sentation for heterogeneous links; 4) Incorporating glob-
al and local similarity evaluation in pattern similarity
measure; and 5) Incorporating a weighting algorithm for
heterogeneous link fusion.

We have empirically analyzed the performance of
GHF-ART on the YouTube and the BlogCatalog het-
erogeneous social network data sets, in terms of param-
eter selection, clustering performance comparison, time
cost and two case studies to analyze the effectiveness of
Robustness Measure and the discovered communities.

Although our work has so far obtained encouraging
experimental results, there are several directions for
further investigation. Firstly, the length of the feature
vectors used to represent relational networks of users
in GHF-ART equals to the number of users, which
results in a high space complexity. Therefore, feature
reduction techniques or hashing methods are preferred
to reduce memory consumption. Secondly, visual data
such as images and videos are becoming more important
in our social life and should also be considered as an
important social link between users. Thus, identifying
a social network data set with visual links and studying
the feasibility of GHF-ART for effective fusion of visual
links will be an interesting extension work.
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